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Abstract

Minerals trapped as inclusions within other host minerals can develop residual stresses on exhu-
mation as a result of the differences between the thermo-elastic properties of the host and inclusion 
phases. The determination of possible entrapment pressures and temperatures from this residual stress 
requires the mutual elastic relaxation of the host and inclusion to be determined. Previous estimates of 
this relaxation have relied on the assumption of linear elasticity theory. We present a new formulation 
of the problem that avoids this assumption. We show that for soft inclusions such as quartz in relatively 
stiff host materials such as garnet, the previous analysis yields entrapment pressures in error by the 
order of 0.1 GPa. The error is larger for hosts that have smaller shear moduli than garnet.
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Introduction

Minerals trapped as inclusions within other host minerals 
can develop residual stresses on exhumation as a result of the 
differences between the thermo-elastic properties of the host and 
inclusion phases (e.g., Fig. 3. in Howell et al. 2010). Measure-
ment of the residual stress in the inclusions can, in combination 
with the equations of state (EoS) of the two phases, be used to 
infer the pressures and temperatures of entrapment if no plastic 
deformation has occurred (e.g., Zhang 1998; Izraeli et al. 1999; 
Guiraud and Powell 2006; Howell et al. 2012; Kohn 2014; 
Kouketsu et al. 2014). The key concept is that when the inclusion 
was trapped the host and inclusion had the same P and T, and the 
inclusion fitted perfectly within the cavity in the host (Fig. 1a), 
so there were no stress gradients across the host and inclusion.

Consider a soft inclusion in a relatively stiff host recovered 
from metamorphic conditions to room conditions. The volume 
change of the host will be less than that expected for a free crystal 
of the inclusion phase. The inclusion phase is therefore com-
pressed to a smaller volume than expected for the final external 
P and T and is therefore under pressure. The volume change of 
the host can be calculated from its EoS. The pressure P*

I in the 
inclusion is then calculated from this final host volume and the 
temperature, using the EoS of the inclusion. At this point, the host 
is under the external pressure, PH,end, but the inclusion is under 
a stress P*

I (Fig. 1b). This is a physically unstable “virtual” state 
because there is a difference in radial stress at the host/inclusion 
wall that will force the wall outward because P*

I > PH,end. This 
expansion leads to compression of the host and thus an increase 
in the radial stress in the host adjacent to the inclusion, and a 
relaxation of the pressure inside the inclusion, ΔPI,relax. The result-
ing expansion of the inclusion continues until the radial stress in 

the inclusion matches that in the host adjacent to the inclusion 
(Fig. 1c) with a stress gradient in the host that decreases to the 
external stress at the outside surface of the host (Goodier 1933; 
Eshelby 1957; Fig. 1c). 

The final observed inclusion pressure PI,end is therefore com-
prised of two parts, 

PI,end = P*
I + ΔPI,relax

Since P*
I can be calculated from the EoS of the two phases, 

the problem of estimating entrapment conditions from observed 
inclusion pressures lies in the calculation of the change in pres-
sure upon relaxation. Previous calculations (e.g., Zhang 1998; 
Izraeli et al. 1999; Guiraud and Powell 2006; Howell et al. 2012; 
Kohn 2014; Kouketsu et al. 2014) all rely on an estimate of the 
relaxation as

ΔPI,relax =
−3KI PI,end − PH,end( )

4GH
.

The derivation of this formula (Zhang 1998) relies on several 
assumptions including that the inclusion is small and spherical 
and that both phases are elastically isotropic. We will retain these 
assumptions. But Zhang’s (1998) derivation also relied on the 
assumptions of linear elasticity; that the elastic properties of the 
host and the inclusion do not change with P or T. This last condi-
tion is clearly not valid for changes in pressure and temperature 
that are geologically relevant. Here we derive a new expression 
for the relaxation ΔPI,relax by an approach that does not require 
this assumption.

Methodology
We first address the “forward problem” of calculating the final pressure on the 

inclusion at PH,end and Tend, following entrapment at conditions Ptrap and Ttrap. Elastic 
deformation is reversible by definition. Therefore the stress and strain in the system 
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of host and inclusion are independent of the path taken from entrapment to the final 
state, and the final inclusion pressure PI,end is the same for any P-T path. Instead 
of performing calculations for a P-T path of isothermal decompression followed 
by cooling (e.g., Zhang 1998; Howell et al. 2010), we consider a simultaneous 
reduction of pressure and temperature from entrapment conditions along a path on 
which the fractional volume changes of the host and inclusion are the same. Such 
a path is known as an “isomeke” (Adams et al. 1975), whose instantaneous slope 
is determined by the ratio of the differences in volume thermal expansion coef-
ficients and compressibilities of the two phases, (∂P/∂T)isomeke = Δα/Δβ (Rosenfeld 
and Chase 1961). Isomekes are therefore curved lines in P-T space (Fig. 2) that 
can be calculated directly from the EoS of the host and the inclusion, without any 
restrictions on the form of the EoS, and importantly no requirement for the elastic 
properties of either phase to be constant.

We now consider the cooling of the system along the isomeke from entrap-
ment at Ptrap and Ttrap to the final temperature Tend. The key point is that, because we 
have moved the system along an isomeke from the initial state, the stress in both 
the inclusion and the host is uniform and equal to the external pressure, which we 
denote Pfoot (Fig. 2) to indicate we are at the foot of the isomeke. So we can now 
apply the analysis of Goodier (1933) to the isothermal decompression of the host 
from Pfoot to PH,end. Goodier (1933) showed that, starting from a system in uniform 
stress and strain, the final stress state is determined solely by the elastic properties 
of the system and the volume strain εH applied at infinity to the host (at constant 
temperature). Under these conditions, the volume strain of the inclusion after the 
application of the strain εH to the host is uniform and constant and given exactly by 
εH(1 – K21), using the notation of Torquato (2002). The parameter K21 is an elastic 
interaction parameter whose value is dependent on the elastic properties of both 
the host and inclusion:

K21 =
KI − KH

KI + 4
3
GH

The volume strain of the inclusion is thus comprised of two parts, εH(1 – K21) = 
εH – εHK21. The first part εH is the fractional volume change of the inclusion equal to 
that of the host, which arises from the decompression of the host from Pfoot on the 
original isomeke to PH,end and gives rise to the pressure P*

I on the inclusion (Figs. 
1b and 2). Therefore the second term in the inclusion strain, –εHK21, corresponds 
to the volume relaxation, which results in the relaxation in pressure of ΔPI,relax 
(Figs. 1c and 2). Since the pressure variation of all terms in K21 will be similar, it 
is reasonable to assume that K21 remains constant over the small pressure interval 
(typically <1 GPa) of ΔPI,relax . That is the only approximation that is made in our 
derivation because ΔPI,relax is then calculated from the volume change –εHK21 and 
the full EoS of the inclusion.

Discussion 
This new approach via the isomeke provides a way to cal-

culate final inclusion pressures arising from the entrapment 
conditions, for any type of EoS. It also allows the calculation of 
entrapment conditions from a measured residual pressure on an 
inclusion (PI,end), as follows. First, the value of Pfoot at Tend is found 
that will produce the observed pressure PI,end. The isomeke pass-
ing through Pfoot, Tend is then calculated from the EoS parameters 
of the host and inclusion, and this line represents possible entrap-
ment conditions. Both the forward and reverse calculations can 
be performed with any common choice of P-V-T EoS, including 
that of Holland and Powell (2011), and both are implemented in 
the EosFit7c program (Angel et al. 2014).

Implications

By considering the elastic problem of a host-inclusion system 
in terms of an initial P-T path along an isomeke, we have pro-
vided a solution to the relaxation problem that is firmly based 
in conventional elasticity theory (Goodier 1933). We now see 
that the “thermodynamic” part, P*

I, of the final inclusion pressure 
effectively arises solely from the isothermal decompression of the 
host from Pfoot to PH,end. More importantly, the relaxation in pres-

Figure 1. Sketches of the radial stress against radius in an ideal 
host-inclusion system. (a) At entrapment (Ptrap), and at any other point 
on the isomeke (e.g., at Pfoot and Tend), there is no stress gradient. (b) In 
the virtual state after decompression of the host to ambient pressure (= 
PH,end), the inclusion is under a radial stress P*

I. There is therefore a step in 
stress at the inclusion/host boundary. (c) As a consequence, the inclusion 
expands until the internal stress drops to PI,end and a stress gradient is 
developed in the host.
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sure ΔPI,relax does not arise from the entire decompression from 
entrapment, but only from the isothermal pressure change from 
Pfoot on the isomeke to PH,end. As we show in the Appendix1, this 
means that the relaxation term of Zhang (1998) can be obtained 
from our solution by assuming constant elastic properties of the 
host and inclusion over the isothermal decompression from Pfoot. 
This explains why the method of Zhang (1998), which was de-
rived by explicitly assuming linear elasticity for all P and T, may 
provide good estimates of PI,end, especially when the final state is 
at room conditions. For example, for a quartz inclusion originally 
entrapped in a garnet at 0.7 GPa and 380 °C (Parkinson 2000), 
the Zhang (1998) method yields a PI,end = 0.45 GPa, only 0.01 
GPa higher than the correct solution (Fig. 3). However, as the 
difference between Pfoot and PH,end increases, the accuracy of the 
Zhang (1998) model decreases. Thus for quartz trapped further 
along the pro-grade path at ~1.7 GPa and ~600 °C, Pfoot = 2.0 
GPa (Fig. 3) and the final inclusion pressure will be 1.06 GPa, 
whereas the Zhang (1998) model overestimates this by 0.08 GPa. 
The same magnitude of error occurs when the entrapment condi-
tions are calculated from a final observed inclusion pressure, but 
with opposite sign; the Zhang (1998) model underestimates the 
entrapment pressure at a given temperature. Because the shear 
modulus of the host appears in the denominator of the equations 
for relaxation, the error will be larger for host materials with 
smaller shear moduli than garnet. For stiffer host materials such 
as diamond, the errors are smaller.

The same trend of increasing error with the magnitude of (Pfoot 
– PH,end) can be seen in calculations of PI,end along the prograde 

metamorphic evolution following entrapment of the inclusion. 
Take the example of the quartz trapped in the cores of the garnets 
in the Kulet whiteschist (Parkinson 2000), illustrated in Figure 
3. Pro-grade compression from entrapment at 0.7 GPa and 
380 °C to peak conditions of around 3.5 GPa and 780 °C leads 
to a Pfoot = 0.52 GPa and P*

I = 1.21 GPa. Because P*
I is less than 

the external pressure, the relaxation acts to increase the pressure 
on the inclusion. The exact solution yields ΔPI,relax = +0.51 GPa, 
and a final inclusion pressure of 1.72 GPa. If the Zhang (1998) 
expression is used, but with the values of KI = 51.3 GPa, GH ~ 
88 GPa appropriate for garnet at the peak conditions, one over-
estimates the relaxation and the peak inclusion pressure by 0.2 
GPa. Interestingly, if one naively uses the exact Zhang (1998) 
formulation with the clearly inappropriate elastic parameters 
for room pressure, this overestimate of ΔPI,relax is almost exactly 
cancelled out by the value of KI = 37.1 GPa. Such cancellation 
cannot be relied upon to occur in all cases!

We caution that, like previous analyses, this approach only 
considers elastic behavior and assumes that no plastic deforma-
tion occurs. All of these calculations also assume that both the 
host and the inclusion are elastically isotropic, that the inclusion 
is isolated elastically from any other inclusion or surface, and 
that the inclusion is spherical. Isolated inclusions containing 
gas, melt, or fluid in glass hosts meet these requirements. While 
hosts such as garnet are approximately elastically isotropic (e.g., 

Figure 3. A pressure-temperature plot for a quartz inclusion in a 
garnet. The light lines are the isomekes for α-quartz in garnet. The heavy 
line is the estimated pro-grade path for the Kulet whiteschist (Parkinson 
2000). A quartz inclusion entrapped at 0.7 GPa and 380 °C lies on an 
isomeke with Pfoot = 0.76 GPa. When the garnet is at room conditions, 
P*

I = 0.59 GPa and the residual pressure is PI,end = 0.44 GPa. At peak 
metamorphic conditions (T = 780 °C), the isomeke pressure is 0.52 GPa, 
and the quartz will be under a pressure of 1.72 GPa, as indicated on the 
right-hand side of the diagram. Isomekes were calculated with EosFit7c 
(Angel et al. 2014) from Birch-Murnaghan EoS in combination with a 
thermal-pressure model (Holland and Powell 2011). The parameters for 
α-quartz: K0 = 37.12 GPa, K0' = 5.99 (Angel et al. 1997), α0 = 3.419 × 
10–5 K–1, θE = 314 K. For garnet: K0 = 174.7 GPa, K0' = 5.3, α0 = 2.748 
× 10–5 K–1, θE = 757 K.

1 Deposit item AM-14-1020, Appendix. Deposit items are stored on the MSA web 
site and available via the American Mineralogist Table of Contents. Find the article 
in the table of contents at GSW (ammin.geoscienceworld.org) or MSA (www.
minsocam.org), and then click on the deposit link.

Figure 2. The use of the isomeke concept to calculate residual 
pressures on an inclusion initially entrapped at Ptrap, Ttrap. (a) The 
calculation first considers cooling along the isomeke to the final 
temperature Tend where the stress in both the inclusion and the host is 
uniform and equal to the external pressure, Pfoot. (b) When the external 
pressure is reduced (isothermally) to PH,end, the un-relaxed inclusion 
pressure would be P*

I. Mutual elastic relaxation of host and inclusion 
then drops the pressure in the inclusion to the final PI,end.
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Sinogeikin and Bass 2000) common inclusion minerals such as 
quartz are not. As a consequence of this elastic anisotropy one 
can calculate that the deviatoric stress in typical quartz inclusions 
in metamorphic garnets will be of the order of 20–40% of the 
average stress. Furthermore, the volume change of the inclusion 
also depends on its shape, even in an elastically isotropic host 
(e.g., Eshelby 1957; Burnley and Davis 2004). Thus the current 
analysis should not be considered to represent an exact solution 
for real host/inclusion systems, but instead to approximate their 
average response to changes in P and T, upon which the aniso-
tropic response can be considered subsequently as a perturbation. 
But this is only true if measurements of the inclusion yield the 
true average stress, to be used as PI,end. Techniques such as in situ 
X‑ray diffraction of the inclusion do reveal both the anisotropic 
stress state and its homogeneity (Nestola et al. 2011). But single 
measurements of the Raman band positions from quartz inclu-
sions (e.g., Kohn 2014; Kouketsu et al. 2014), however, may not 
reveal the average stress state because of the sensitivity of Raman 
band positions to anisotropic stresses (Briggs and Ramdas 1977).
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