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ABSTRACT

Minerals trapped as inclusions within other host minerals can develop residual stresses on exhu-
mation as a result of the differences between the thermo-elastic properties of the host and inclusion
phases. The determination of possible entrapment pressures and temperatures from this residual stress
requires the mutual elastic relaxation of the host and inclusion to be determined. Previous estimates of
this relaxation have relied on the assumption of linear elasticity theory. We present a new formulation
of'the problem that avoids this assumption. We show that for soft inclusions such as quartz in relatively
stiff host materials such as garnet, the previous analysis yields entrapment pressures in error by the
order of 0.1 GPa. The error is larger for hosts that have smaller shear moduli than garnet.
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INTRODUCTION

Minerals trapped as inclusions within other host minerals
can develop residual stresses on exhumation as a result of the
differences between the thermo-elastic properties of the host and
inclusion phases (e.g., Fig. 3. in Howell et al. 2010). Measure-
ment of the residual stress in the inclusions can, in combination
with the equations of state (EoS) of the two phases, be used to
infer the pressures and temperatures of entrapment if no plastic
deformation has occurred (e.g., Zhang 1998; Izraeli et al. 1999;
Guiraud and Powell 2006; Howell et al. 2012; Kohn 2014;
Kouketsu et al. 2014). The key concept is that when the inclusion
was trapped the host and inclusion had the same P and 7, and the
inclusion fitted perfectly within the cavity in the host (Fig. 1a),
so there were no stress gradients across the host and inclusion.

Consider a soft inclusion in a relatively stiff host recovered
from metamorphic conditions to room conditions. The volume
change of'the host will be less than that expected for a free crystal
of the inclusion phase. The inclusion phase is therefore com-
pressed to a smaller volume than expected for the final external
P and T and is therefore under pressure. The volume change of
the host can be calculated from its EoS. The pressure P in the
inclusion is then calculated from this final host volume and the
temperature, using the EoS of the inclusion. At this point, the host
is under the external pressure, P ..q, but the inclusion is under
a stress Py (Fig. 1b). This is a physically unstable “virtual” state
because there is a difference in radial stress at the host/inclusion
wall that will force the wall outward because P; > Py g,q. This
expansion leads to compression of the host and thus an increase
in the radial stress in the host adjacent to the inclusion, and a
relaxation of the pressure inside the inclusion, AP, ... The result-
ing expansion of the inclusion continues until the radial stress in
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the inclusion matches that in the host adjacent to the inclusion
(Fig. 1c) with a stress gradient in the host that decreases to the
external stress at the outside surface of the host (Goodier 1933;
Eshelby 1957; Fig. 1c¢).

The final observed inclusion pressure P, ., is therefore com-
prised of two parts,

Pl,end = PT + AI)l,relax

Since Py can be calculated from the EoS of the two phases,
the problem of estimating entrapment conditions from observed
inclusion pressures lies in the calculation of the change in pres-
sure upon relaxation. Previous calculations (e.g., Zhang 1998;
Izraeli et al. 1999; Guiraud and Powell 2006; Howell et al. 2012;
Kohn 2014; Kouketsu et al. 2014) all rely on an estimate of the
relaxation as
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The derivation of this formula (Zhang 1998) relies on several
assumptions including that the inclusion is small and spherical
and that both phases are elastically isotropic. We will retain these
assumptions. But Zhang’s (1998) derivation also relied on the
assumptions of linear elasticity; that the elastic properties of the
host and the inclusion do not change with P or 7. This last condi-
tion is clearly not valid for changes in pressure and temperature
that are geologically relevant. Here we derive a new expression
for the relaxation AP, ., by an approach that does not require
this assumption.

METHODOLOGY

We first address the “forward problem” of calculating the final pressure on the
inclusion at Py ,g and T4, following entrapment at conditions P, and T,,. Elastic
deformation is reversible by definition. Therefore the stress and strain in the system
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FIGURE 1. Sketches of the radial stress against radius in an ideal
host-inclusion system. (a) At entrapment (£,,,), and at any other point
on the isomeke (e.g., at P, and 7.,4), there is no stress gradient. (b) In
the virtual state after decompression of the host to ambient pressure (=
Py a), the inclusion is under a radial stress P;. There is therefore a step in
stress at the inclusion/host boundary. (¢) As a consequence, the inclusion
expands until the internal stress drops to Py.,q and a stress gradient is
developed in the host.
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of host and inclusion are independent of the path taken from entrapment to the final
state, and the final inclusion pressure Py, is the same for any P-T path. Instead
of performing calculations for a P-T path of isothermal decompression followed
by cooling (e.g., Zhang 1998; Howell et al. 2010), we consider a simultaneous
reduction of pressure and temperature from entrapment conditions along a path on
which the fractional volume changes of the host and inclusion are the same. Such
a path is known as an “isomeke” (Adams et al. 1975), whose instantaneous slope
is determined by the ratio of the differences in volume thermal expansion coef-
ficients and compressibilities of the two phases, (OP/0T)iomexe = A0/AB (Rosenfeld
and Chase 1961). Isomekes are therefore curved lines in P-T space (Fig. 2) that
can be calculated directly from the EoS of the host and the inclusion, without any
restrictions on the form of the EoS, and importantly no requirement for the elastic
properties of either phase to be constant.

We now consider the cooling of the system along the isomeke from entrap-
ment at Py, and Ty, to the final temperature Tt,.. The key point is that, because we
have moved the system along an isomeke from the initial state, the stress in both
the inclusion and the host is uniform and equal to the external pressure, which we
denote Py, (Fig. 2) to indicate we are at the foot of the isomeke. So we can now
apply the analysis of Goodier (1933) to the isothermal decompression of the host
from Py t0 Py eng. Goodier (1933) showed that, starting from a system in uniform
stress and strain, the final stress state is determined solely by the elastic properties
of the system and the volume strain &y applied at infinity to the host (at constant
temperature). Under these conditions, the volume strain of the inclusion after the
application of the strain gy to the host is uniform and constant and given exactly by
ey(1 — K3)), using the notation of Torquato (2002). The parameter K5, is an elastic
interaction parameter whose value is dependent on the elastic properties of both
the host and inclusion:
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The volume strain of the inclusion is thus comprised of two parts, e4(1 — K3) =
ey—eukKyy. The first part gy is the fractional volume change of the inclusion equal to
that of the host, which arises from the decompression of the host from Py, on the
original isomeke to Py ., and gives rise to the pressure Pj on the inclusion (Figs.
1b and 2). Therefore the second term in the inclusion strain, —4K;,, corresponds
to the volume relaxation, which results in the relaxation in pressure of AP .,
(Figs. 1c and 2). Since the pressure variation of all terms in K, will be similar, it
is reasonable to assume that K, remains constant over the small pressure interval
(typically <1 GPa) of AP ., . That is the only approximation that is made in our
derivation because AP ., is then calculated from the volume change —&,K5, and
the full EoS of the inclusion.

DISCUSSION

This new approach via the isomeke provides a way to cal-
culate final inclusion pressures arising from the entrapment
conditions, for any type of EoS. It also allows the calculation of
entrapment conditions from a measured residual pressure on an
inclusion (P .q), as follows. First, the value of Py, at T, is found
that will produce the observed pressure P, 4. The isomeke pass-
ing through Py, T.,q is then calculated from the EoS parameters
of the host and inclusion, and this line represents possible entrap-
ment conditions. Both the forward and reverse calculations can
be performed with any common choice of P-V-T EoS, including
that of Holland and Powell (2011), and both are implemented in
the EosFit7c program (Angel et al. 2014).

IMPLICATIONS

By considering the elastic problem of a host-inclusion system
in terms of an initial P-7 path along an isomeke, we have pro-
vided a solution to the relaxation problem that is firmly based
in conventional elasticity theory (Goodier 1933). We now see
that the “thermodynamic” part, Pj, of the final inclusion pressure
effectively arises solely from the isothermal decompression of the
host from P,y t0 Py erg- More importantly, the relaxation in pres-
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FIGURE 2. The use of the isomeke concept to calculate residual
pressures on an inclusion initially entrapped at Py, T, (a) The
calculation first considers cooling along the isomeke to the final
temperature T, where the stress in both the inclusion and the host is
uniform and equal to the external pressure, Py, (b) When the external
pressure is reduced (isothermally) to P4, the un-relaxed inclusion
pressure would be Pj. Mutual elastic relaxation of host and inclusion
then drops the pressure in the inclusion to the final P .

sure AP, .., does not arise from the entire decompression from
entrapment, but only from the isothermal pressure change from
Proo 01 the isomeke to Py .,g. As we show in the Appendix!, this
means that the relaxation term of Zhang (1998) can be obtained
from our solution by assuming constant elastic properties of the
host and inclusion over the isothermal decompression from Py,
This explains why the method of Zhang (1998), which was de-
rived by explicitly assuming linear elasticity for all P and 7, may
provide good estimates of P, .4, especially when the final state is
at room conditions. For example, for a quartz inclusion originally
entrapped in a garnet at 0.7 GPa and 380 °C (Parkinson 2000),
the Zhang (1998) method yields a P, ,q = 0.45 GPa, only 0.01
GPa higher than the correct solution (Fig. 3). However, as the
difference between P, and Py 4 increases, the accuracy of the
Zhang (1998) model decreases. Thus for quartz trapped further
along the pro-grade path at ~1.7 GPa and ~600 °C, Py, = 2.0
GPa (Fig. 3) and the final inclusion pressure will be 1.06 GPa,
whereas the Zhang (1998) model overestimates this by 0.08 GPa.
The same magnitude of error occurs when the entrapment condi-
tions are calculated from a final observed inclusion pressure, but
with opposite sign; the Zhang (1998) model underestimates the
entrapment pressure at a given temperature. Because the shear
modulus of the host appears in the denominator of the equations
for relaxation, the error will be larger for host materials with
smaller shear moduli than garnet. For stiffer host materials such
as diamond, the errors are smaller.

The same trend of increasing error with the magnitude of (Py,,
— Pyi.na) can be seen in calculations of A, along the prograde
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metamorphic evolution following entrapment of the inclusion.
Take the example of the quartz trapped in the cores of the garnets
in the Kulet whiteschist (Parkinson 2000), illustrated in Figure
3. Pro-grade compression from entrapment at 0.7 GPa and
380 °C to peak conditions of around 3.5 GPa and 780 °C leads
to a Py = 0.52 GPa and P;= 1.21 GPa. Because P; is less than
the external pressure, the relaxation acts to increase the pressure
on the inclusion. The exact solution yields AP, .., = +0.51 GPa,
and a final inclusion pressure of 1.72 GPa. If the Zhang (1998)
expression is used, but with the values of K; = 51.3 GPa, Gy ~
88 GPa appropriate for garnet at the peak conditions, one over-
estimates the relaxation and the peak inclusion pressure by 0.2
GPa. Interestingly, if one naively uses the exact Zhang (1998)
formulation with the clearly inappropriate elastic parameters
for room pressure, this overestimate of APy, is almost exactly
cancelled out by the value of K; = 37.1 GPa. Such cancellation
cannot be relied upon to occur in all cases!

We caution that, like previous analyses, this approach only
considers elastic behavior and assumes that no plastic deforma-
tion occurs. All of these calculations also assume that both the
host and the inclusion are elastically isotropic, that the inclusion
is isolated elastically from any other inclusion or surface, and
that the inclusion is spherical. Isolated inclusions containing
gas, melt, or fluid in glass hosts meet these requirements. While
hosts such as garnet are approximately elastically isotropic (e.g.,
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FIGURE 3. A pressure-temperature plot for a quartz inclusion in a
garnet. The light lines are the isomekes for a-quartz in garnet. The heavy
line is the estimated pro-grade path for the Kulet whiteschist (Parkinson
2000). A quartz inclusion entrapped at 0.7 GPa and 380 °C lies on an
isomeke with P;,, = 0.76 GPa. When the garnet is at room conditions,
Pi=0.59 GPa and the residual pressure is Py.,q = 0.44 GPa. At peak
metamorphic conditions (7= 780 °C), the isomeke pressure is 0.52 GPa,
and the quartz will be under a pressure of 1.72 GPa, as indicated on the
right-hand side of the diagram. Isomekes were calculated with EosFit7c
(Angel et al. 2014) from Birch-Murnaghan EoS in combination with a
thermal-pressure model (Holland and Powell 2011). The parameters for
a-quartz: K, = 37.12 GPa, Kj= 5.99 (Angel et al. 1997), o, = 3.419 x
107 K!, 8 = 314 K. For garnet: K, = 174.7 GPa, Kj= 5.3, a, = 2.748
x10° K1, 8, =757 K.
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Sinogeikin and Bass 2000) common inclusion minerals such as
quartz are not. As a consequence of this elastic anisotropy one
can calculate that the deviatoric stress in typical quartz inclusions
in metamorphic garnets will be of the order of 20-40% of the
average stress. Furthermore, the volume change of the inclusion
also depends on its shape, even in an elastically isotropic host
(e.g., Eshelby 1957; Burnley and Davis 2004). Thus the current
analysis should not be considered to represent an exact solution
for real host/inclusion systems, but instead to approximate their
average response to changes in P and 7, upon which the aniso-
tropic response can be considered subsequently as a perturbation.
But this is only true if measurements of the inclusion yield the
true average stress, to be used as P 4. Techniques such as in situ
X-ray diffraction of the inclusion do reveal both the anisotropic
stress state and its homogeneity (Nestola et al. 2011). But single
measurements of the Raman band positions from quartz inclu-
sions (e.g., Kohn 2014; Kouketsu et al. 2014), however, may not
reveal the average stress state because of the sensitivity of Raman
band positions to anisotropic stresses (Briggs and Ramdas 1977).
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