Absorption and Intensity Corrections

Ross Angel Dipartimento di Geoscienze, Universita di Padova

Overview

Absorption –

the principles

the information needed

And what we cannot correct!

Data collection....done and integrated!

Intensity data quality:

Intensity data is degraded by:

 Limited access Low signal 	Experiment design Integration
Scattering by cell components	Experiment design Integration
Shadowing by cell components	
Beam decay (synchrotron data)	Data Reduction
Absorption by cell components	
Diamond dips	

Post-integration steps

- Data reduction
 - Critical for HP data
 - Absorption corrections
 - Averaging

- Robust-resistant weighting
- Restraints
- Careful evaluation of outliers
- Structure validation

Absorption in the DAC: geometry

Absorption in the DAC: defining beam paths

- The DAC is fixed to the goniometer head
- A natural Cartesian reference basis is therefore a basis fixed to the goniometer head (phi-axis system)
- Define beam paths on this axial system

Busing, Levy (1967) Acta Cryst 22:457

Defining beam paths

- Incident beam path
 - Only goniometer angles
- Diffracted beam path
 - Goniometer angles
 - Detector position
 - Spot position on the detector (area detectors only)

- Information can be provided in two ways:
- **PD: goniometer angles**
- PD & AD: Direction cosines of I-beam and D-beam
 - In SHELX hkl files, direction cosines relative to crystal axes!

The orientation matrix, UB

Defines the orientation of the reciprocal lattice vectors of the crystal with respect to the goniometer:

<u>hφ</u> = UB.<u>h</u>

B is a matrix that transforms reciprocal space vectors (hkl) from reciprocal lattice basis to an orthonormal basis:

The B matrix (or UB) is needed to convert the SHELX direction cosines from crystal system to phi-axis system (Allen et al, 2000)

Defining beam paths with the UB matrix

- The definition of the phi-axis system, and thus U and UB, is different in different software!
 - Axis directions when diffractometer circles at zero

- And you need to know:
 - Conventions used by your absorption program
- **For PD data and setting angles in datafile:**
 - Type of goniometer (kappa or Eulerian)
 - **Circle parities**

Describing the crystal

- The crystal position in the DAC can be described by:
 - The Miller indices and distances of faces
 - Coordinates of the corners
- In addition, the position of the crystal relative to the gasket centre must be defined for gasket shadowing:

ECM Workshop Bergen, 2012

The DAC on the goniometer

It is strongly recommended that you always collect data with the DAC face-on to the beam when the diffractometer angles are at zero.

- □ If not, be very very very careful in defining:
 - The opening angle and DAC to the integration program
 - The size and shape and position of the crystal in the DAC

At synchrotrons....

Also worry about the detector orientation!

Look at the frames...cell shadow and beamstop

D3 (HASYLAB) 4(3)-circle HUBER & MAR165 (CCD)

Pictures: Andrzej Grzechnik

ECM Workshop Bergen, 2012

Absorption corrections

Absorption by

- Anvils + backing plates
- Pressure medium
- Crystal
- Gasket

Psi scans or SADABS

Not recommended

Integration over the crystal

- Non-analytic
- Replace by summation over Gaussian grid of points on the crystal:

$$T = V^{-1} \int_{V} \exp\left[-\sum_{i} \mu_{i}(t_{\mathrm{I}i} + t_{\mathrm{D}i})\right] \mathrm{d}V.$$

$$T = V^{-1}T(\Psi_{\rm I})T(\Psi_{\rm D})\int_{V} \exp\left[-\sum_{i}\mu_{i}(t_{\rm Ii}+t_{\rm Di})\right]\mathrm{d}V,$$

Gasket shadowing

ECM Workshop Bergen, 2012

Test models with psi scans

Small beam case

- □ If the spot size of the beam is very small compared to the crystal....
 - No edge effects
 - No gasket shadowing
 - Absorption by crystal is just same as infinite flat plate

$$T \propto \exp\left[-\frac{\mu t}{2}\left(\frac{1}{\cos\Psi_{I}} + \frac{1}{\cos\Psi_{D}}\right)\right]$$

What we cannot correct: Diamond reflections

Inter-frame scales

- Synchrotron incident intensity variation:
 - Monitor incident beam and correct at integration
- □ Inter-frame scaling on area detectors:
 - Arises from several sources
 - Often determined from symmetry-equivalent intensities
 - Apply after absorption corrections

П

Absorption in DAC – key points

- For corrections on a physical basis, the DAC, crystal and data must be described on a common reference system
 - Orientation matrix
 - Axial systems
- **Keep things simple:**
 - DAC face-on to beam at circles zero
 - Use hkl files with d-cosines
- Do inter-frame detector scaling afterwards
- Diamond dips and other outliers:
 - Identify in averaging or in refinement (Fo vs Fc)

