

Integration with CrysAlisPro Agilent Technologies (former Oxford Diffraction)

C. Hejny¹ & D. Gatta²

¹ Universität Innsbruck ² Università di Milano

http://www.oxford-diffraction.com/

- Support for up to 2Kg on the phi axis
- Better than 10 micron sphere of confusion

Xcalibur [™] PD

SeperNova ™ Hi-flux dual wavelength micro-focus Mo & Cu X-ray sources

Oxford Diffraction diffractometers driving program: CrysAlis^{Pro} ™

CrysAlisPro is accessible either via a graphical user interface or by a command line interface and can be operated under fully automatic, semi-automatic or **completely manual control**. A typical experiment is conducted in three stages:

1) **Automatic crystal screening** - A short pre-experiment of <5 minutes evaluates the crystal quality, providing unit cell and best exposure time information

2) **Strategy computation** - Sophisticated automatic strategy software calculates optimal conditions for fast, high quality, complete data collection

3) **Data collection and concurrent data reduction** - As data is collected, intelligent routines tune the parameters to give the best quality integrated data

CrysAlisPro also provides several specialist tools for dealing with non-standard and problematic crystals. These include:

- * Movie based face indexation absorption correction
- * Advanced unit cell finding
- * Reciprocal space viewer
- * Twinning
- * Incommensurates
- * High Pressure
- * Powders

CrysAlisPro outputs data in HKLF format and interfaces directly with OLEX2, SHELX and third party data reduction packages including MOSFLM and XDS. CrysAlisPro is provided under a multi-site, multi-user licence.

(1) Introduction to CrysAlisPro

- (2) General remarks
- (3) Centre DAC
- (4) Data collection
- (5) Pre-analysis by user
- (6) Best possible data reduction for high pressure data
 - Get good unit cell
 - **Data reduction**
 - **Absorption correction**

Good practice:

Measure crystal in air

Measure crystal in DAC

without pressure / pressure transmitting medium

Measure crystal with increasing pressure

Have a datasheet for each measurement

Have a datasheet for each data integration

Example of a data sheet for each measurement

		Date:
Title (directory/filename) Chem. composition DAC-front facing X-ray for ω =	= φ = κ = 0°	
Used cell LH-0806- Pressure [GPa]: time between chan AP ruby Indent of gasket: Ø of gasket hole: 250 micron Crystal size:	ge of P and m	easurement
Detector distance: 90 mm Exposure time: 60 sec	ame): Make an diamond	image of crystal on before closing DAC
Strategy of measurement:	Take care	about orientation of DAC
Lattice parameter, S.G: a α Notes:	b β	c γ

Example of a data sheet for each measurement

Date:

<u>Title</u> (directory/filename) Chem. composition \Box DAC-front facing X-ray for $\omega = \varphi = \kappa = 0^{\circ}$

Used cell LH-0806-Pressure [GPa]:

time between change of P and measurement

b

β

AP ruby

Indent of gasket: Ø of gasket hole: 250 micron Crystal size: Image of crystal (directory/filename):

Detector distance: 90 mm Exposure time: 60 sec Generator setting (kV, mA): 50/40 Strategy of measurement:

Lattice parameter, S.G:

a α Notes:

С

γ

Example of a data sheet for each measurement

- (1) Introduction to CrysAlisPro
- (2) General remarks
- (3) Centre DAC
- (4) Data collection
- (5) Pre-analysis by user
- (6) Best possible data reduction for high pressure data
 - Get good unit cell
 - **Data reduction**
 - **Absorption correction**

See notes on morning talk "Diffractometry Data Collection"

(1) Put on DAC in correct orientation

 $\sqrt{}$ DAC-front facing X-ray for $\omega = \varphi = \kappa = 0^{\circ}$

See notes on morning talk "Diffractometry Data Collection"

- (1) Put on DAC in correct orientation
- (2) Look perpendicular to diamond surface:

Rotate DAC until the face of the DAC is exactly horizontal, as measured by a spirit level. Gently tighten the height locking screw on the goniometer head.

See notes on morning talk "Diffractometry Data Collection"

- (1) Put on DAC in correct orientation
- (2) Look perpendicular to diamond surface
- (3) Visual pre-centering

See notes on morning talk "Diffractometry Data Collection"

- (1) Put on DAC in correct orientation
- (2) Look perpendicular to diamond surface
- (3) Visual pre-centering
- (4) Precise Centre with X-ray beam

Type in the following commands

or write a macro *filename.mac* with these commands :

gt p -25	gt e 0 0 90 0
card raw on 0.1	card raw on 0.1
ip copy dc2 dc1	ip copy dc2 dc1
gt p 25	gt e 0 0 -90 0
card raw on 0.1	card raw on 0.1
ip subtract dcc dc1 dc2	ip subtract dcc dc1 dc2
gt p 0	gt e 0 0 0 0

Call the macro with the command script *filename.mac*

See notes on morning talk "Diffractometry Data Collection"

- (1) Put on DAC in correct orientation
- (2) Look perpendicular to diamond surface
- (3) Visual pre-centering
- (4) Precise Centre with X-ray beam

Type in the following commands

or write a macro *filename.mac* with these commands :

gt p -25 card raw on 0.1 ip copy dc2 dc1 gt p 25 card raw on 0.1 ip subtract dcc dc1 dc2 gt p 0

BEAMSTOP IN AFTER THAT!

Call the macro with the command script *filename.mac*

- (1) Introduction to CrysAlisPro
- (2) General remarks
- (3) Centre DAC

(4) Data collection

(5) Pre-analysis by user

(6) Best possible data reduction for high pressure data

Get good unit cell

Data reduction

Absorption correction

- 2 options for full experiment:
- (1) pre-designed runs
- (2) Experiment strategy from CrysAlisPro

(1) Pre-set run file:

Diego Gatta has designed run files for data collection with the Sapphire-3 CCD set at *dd*=80mm and a DAC with a half-opening angle of 40 degrees:

DAC_psi40_dd80_tth60_full_sapphire3.run DAC_psi40_dd80_tth80_full_sapphire3.run

Both run files attempt to cover all of accessible reciprocal space. If only onehalf of that space is required, then the runs at negative values of 2-theta can be deleted.

I have a copy of this file for distribution.

Start/Stop -> New (no pre-experiment)

Edit da	tacollec	tion runs ((1.0.20) (De	etector dis	tance = 80.50mm)								×
Į	4	Edit c	lata co	llectio	n runs						Cry	sAl	Pro IS
Nam	e of expe	eriment: K	alsilite_P1								He	lp	ĺ.
Data	a collectio	n directory:	F:\Lavori\K	alsilite\Kalsili	te\Milano\HP-exp\P1					B			
Tota DC f Ref l	II # of frar rames: frames:	nes: 1256 1256 0			Disk space required Disk space required Disk space available Approximate data co	for all runs (N for todo runs e ollection time	1B): (MB):	332.06 0.00 354226.27 45:40		Export	umpu t	ort	\mathbf{D}
#run	type	start	end	width	time	omega	detector	kappa	phi	#to do	#done		
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [11] ▼	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-40.000 -20.000 -97.000 -63.000 -20.000 -40.000 -40.000 -33.000 -33.000 -13.000	20.000 40.000 -37.000 0.000 20.000 -20.000 40.000 -33.000 -13.000 7.000	0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	60.000 + 60.000 60.000 + 60.000	- - - - - - - - - - - - - - - - - - -	-20.000 20.000 -20.000 -40.000 -40.000 -60.000 -60.000 -60.000 -40.000 40.000	0.000 0.000 134.600 0.000 0.000 0.000 0.000 39.460 39.460 39.460	0.000 0.000 -56.900 0.000 0.000 0.000 0.000 -12.900 -12.900 -12.900	120 120 92 40 40 40 40 40 40 40 40	120 120 92 40 40 40 40 40 40 40 40 40	▼ ▶	· T K +
	Data colle	ection frame	C Reference	ce frames	reference r	runs frequenc	y = 1 per 0	de frames		Ch	ange ref. freq.		
Run	function Edi Select to	s t	Expand : Done nu	select Imber	Run list functions Global width Global time		ange theta ert done run:	s	Delete	referr (ed to: O all runs O selected ru	uns	

<u>Optionally:</u>

Prevent remeasuring on diamond reflection overflow: ccd skipremeasure 1

	CrysAlis CCD program options (1.0.45)
<u>Data collection:</u> <u>Optionally:</u>	Peak table Color codes Beam stop Angular limits Goniometer SM\PX Compression Dark Generator Programs E-mail Instrument model I Instrument model II Monochromator Fonts Run list size CCD Processing User/access Distance calibration This dialog allows you to change CCD related properties CCD Processing CCD
Prevent remeasuring on dia ccd skipremeasure 1 Shell command window (Crtl - interrupts) Command shell	Data collection properties Data collection mode Standard Stip image correlation (no Standard Skip overflow remeasure Screening Auto save uncorrelated fre Screening without correlation Take frame as multiple High dynamic with normal correlation
REDCCDRAMP: Spellman device locked OK. (Wed Aug 01Spellman device ramping to: kV=20.00,mA+5.00Spellman device write OK: kV=20.00,mA+5.00,0RAMF: Spellman device unlock OK (Wed Aug 01RAMP: Spellman device shutdown OK (Wed Aug 01RAMPING INFO: Ramping after 30m 0.05Spellman device initializedRAMP: Spellman device locked OK. (Thu Aug 02RAMP: Spellman device unlock OK (Thu Aug 02	 Record movie during data collection Append spikes to image
RAMP: Spellman device shutdown OK (Thu Aug 0 F12 Recovering position price to F12 RAMPING INFO: Ramping after 30m 00s Spellman device initialized RAMP: Spellman device locked OK. (Thu Aug 02 RAMP: Spellman device unlock OK (Thu Aug 02 RAMP: Spellman device shutdown OK (Thu Aug 0 Innerner Ortical Consel	Data collection speed-up options NONE
Options CCD	Save to master file on exit OK Cancel Help Close

Optionally:

ccd skipremeasure 1 to prevent remeasuring on diamond reflection overflow.

Collision test: dc stest

Pre-Experiment

Delete 3 Standard runs

Make phi- or omega scan from -15 to +15

Good time to get an estimate of intensities: 10 - 30sec / frame

Width: 1°

Make sure you make no other changes after editing the runs!

(in this case CrysAlisPro goes back to the 3 standard runs for a pre-experiment)

🌑 pre_	TI-Silikat_7	Agilent automode pre-experiment (1.1.8)	× <u>- 8 ×</u>
Ê		Pro Pro CrysAlis	X-ray
		Path and user	(ray) C Level
010 1001 → 11011 →		Path is ok! Experiment: exp 2097 in folder N:\Volker\TI-Silikat\exp 2097 Set user Experiment performer:	
		Type Sample type: Use pilot Small molecule Protein Options	
O.		Expected chemical formula: <u>Movie</u>	8
·Ju	4	Comment	
		Experiment Detector settings and targets Resolution O Theta O 2Theta 0.800 Detector distance (mm): 55.0 C The same time for all tests positions (or (dar), 25.00	
3 T 1002		Taraet I/sia: 15.0 Run list info	
		Total Pre-experiment Time: 0:17 Experiment Finish: Fri Aug 03 15:26:27 2012 No. Bunc /Eramoni 2/15	
WINGH		Automode settings	۵
+ SHELL		Auto cryo/hot device shutdown on experiment completion Auto start Experiment Use Laue Symmetry Record movie during dc. Step in deg: 6 Set total time (hrs): 15.0 Attempt AutoChem	۵
6 2.		- Information	nies
Jana	•	Recall last preexperiment settings	gius
	lmage list 👻		
樻 Start	t 🥖 🙆 🚺	🤌 » 🛛 🕥 pre_TI-Silikat_7	🖲 💽 3:09 PM

🌑 pre_	TI-Silika <mark>e</mark>	Edit datacollection runs (1.0.20) (Detector distance = 55.00mm)	_ & ×
Î		Edit data collection runs	
		Name of experiment pre_exp_2097	Level
		Total # of frames: 15 Disk space required for all runs (MB): 15.81 Export Import DC frames: 15 Disk space required for todo runs (MB): 15.81 Ref frames: 0 Disk space available (Mbytes): 1880907.60 Approximate data collection time (h:min): 0:17 Append	
. *		#run type start ond width time omega detect kappa phi #to do #done 1 0 28.000 33.000 1.000 25.000 + 25.000 - 10.839 -70.000 90.000 5 0 2 0 28.000 33.000 1.000 25.000 + 25.000 - -12.245 70.000 0.000 5 0 - - - - - 12.245 70.000 90.000 5 0 - - - - - - 12.245 70.000 90.000 5 0 - - - - - - - - - - - 12.245 70.000 90.000 5 0 - - - - - - - - - 12.245 70.000 90.000 5 0 - - - - - 12.245 70.000	٥
WINGK		Type of run list	0
SHELL		Edit Expand select Select to new Done number Global time Invert done runs Global time Invert done runs	0
Jana	Image	New runs: Choose a scan type	
🏄 Start	🥖 🕻	🙆 🚱 🐣 🛛 🕥 pre_TI-Silikat_7	3:10 PM

(2) Use CrysAlisPro for Experiment strategy

IMPORTANT:

Looooong enough exposure time!!!!

REDUNDANT data

Advanced: HP opening angle: 40° -dependant on used cell!

periment Strategy (1.1.5)

periment Strategy (1.1.5)

- (1) Introduction to CrysAlisPro
- (2) General remarks
- (3) Centre DAC
- (4) Data collection

(5) Pre-analysis by user

(6) Best possible data reduction for high pressure data

Get good unit cell

Data reduction

Absorption correction

Pre-Analysis by the user:

(1) Look through all frames:

Is there exposure on all frames

or are some frames shadowed by the cell?

USE ONLY FRAMES WITH SAMPLE REFLECTIONS!

(2) Is the beamstop shadow in the correct place and of good size?(if change necessary: save with wd cal)

(3) Look at results from automatic data reduction

🕼 HP_DEMO_ - CrysAlisPro Gemini ultra system (Mo wavelength active) - RED view: E:\OD_Work\HP_DEMO\HP_DEMO_\HP_DEMO_.par

Dc rrp

		or data	ooncourc	on and	reduction r	esults			G
Data reduction	file contents	Data r	eduction output	: [Red graphs	1	Data collection o	utput	Device
1.34-1.17	350	65	65	100.0	5.4	4376.16	16.47	0.115	0.046
1.17-1.07	269	65	65	100.0	4.1	3042.06	11.77	0.218	0.075
1.07-0.98	264	67	65	97.0	4.1	3034.99	10.47	0.359	0.089
0.98-0.92	266	68	66	97.1	4.0	2304.14	8.57	0.288	0.098
0.92-0.87	263	68	65	95.6	4.0	1477.23	5.79	0.531	0.146
0.87-0.83	204	67	65	97.0	3.1	1378.82	4.64	0.451	0.174
0.83-0.80	222	69	65	94.2	3.4	1378.41	4.73	0.549	0.173
0.80-0.75	125	123	70	56.9	1.8	1642.45	3.83	0.265	0.183
inf-0.75	2686	724	657	90.7	4.1	3770.95	15.49	0.179	0.066
inf-0.80	2566	603	589	97.7	4.4	3867.60	16.03	0.178	0.063
Statistics									
resolu- tion(A)	vs resol # kept	lution (ta # theory	king redu # unique c	ndancy : % omplete	into account) average redundancy	- Laue (mean F2	group: P6/m mean F2/sig(F2)	(hex-c) Rint	RsigmaB
resolu- tion(A) 	vs resol # kept 	lution (ta # theory 	uking redu # unique c 	ndancy : % omplete 	into account) average redundancy 9.9	- Laue (mean F2 7439.89	group: P6/m mean F2/sig(F2) 	(hex-c) Rint 0.070	RsigmaB 0.017
resolu- tion(A) inf-1.70 1.69-1.33	vs resol # kept 365 383	lution (ta # theory 	uking redu # unique c 	ndancy : % omplete 100.0 100.0	into account) average redundancy 9.9 10.4	- Laue (mean F2 7439.89 6698.87	group: P6/m mean F2/sig(F2) 46.34 41.29	(hex-c) Rint 0.070 0.106	RsigmaB 0.017 0.026
resolu- tion(A) inf-1.70 1.69-1.33 1.33-1.15	vs resol # kept 365 383 352	lution (ta # theory 37 37 37	uking redu # unique c 	ndancy : % omplete 100.0 100.0 100.0	into account) average redundancy 9.9 10.4 9.5	- Laue (mean F2 7439.89 6698.87 4567.71	group: P6/m mean F2/sig(F2) 46.34 41.29 21.00	(hex-c) Rint 0.070 0.106 0.112	RsigmaB 0.017 0.026 0.031
resolu- tion(Å) inf-1.70 1.69-1.33 1.33-1.15 1.14-1.04	vs resol # kept 365 383 352 302	lution (te # theory 37 37 37 37	unique c unique c 	ndancy : % omplete 100.0 100.0 100.0 100.0	into account) average redundancy 9.9 10.4 9.5 8.2	- Laue (mean F2 7439.89 6698.87 4567.71 2635.08	group: P6/m mean F2/sig(F2) 46.34 41.29 21.00 15.43	(hex-c) Rint 0.070 0.106 0.112 0.290	RsigmaB 0.017 0.026 0.031 0.069
resolu- tion(Å) inf-1.70 1.69-1.33 1.33-1.15 1.14-1.04 1.04-0.96	vs resol # kept 365 383 352 302 295	lution (te # theory 	unique c 	ndancy : % omplete 100.0 100.0 100.0 100.0 100.0	into account) average redundancy 9.9 10.4 9.5 8.2 8.0	- Laue (mean F2 7439.89 6698.87 4567.71 2635.08 3244.61	group: P6/m mean F2/sig(F2) 46.34 41.29 21.00 15.43 15.07	(hex-c) Rint 0.070 0.106 0.112 0.290 0.390	RsigmaB 0.017 0.026 0.031 0.069 0.066
resolu- tion(Å) inf-1.70 1.69-1.33 1.33-1.15 1.14-1.04 1.04-0.96 0.96-0.91	vs resol # kept 365 383 352 302 295 244	lution (te # theory 37 37 37 37 37 37 37	unique c 37 37 37 37 37 37 37 37	ndancy : % omplete 100.0 100.0 100.0 100.0 100.0 100.0	into account) average redundancy 9.9 10.4 9.5 8.2 8.0 6.6	- Laue (mean F2 7439.89 6698.87 4567.71 2635.08 3244.61 1602.12	group: P6/m mean F2/sig(F2) 46.34 41.29 21.00 15.43 15.07 8.18	(hex-c) Rint 0.070 0.106 0.112 0.290 0.390 0.395	RsigmaB 0.017 0.026 0.031 0.069 0.066 0.102
resolu- tion(A) inf-1.70 1.69-1.33 1.33-1.15 1.14-1.04 1.04-0.96 0.96-0.91 0.91-0.86	vs resol # kept 365 383 352 302 295 244 274	lution (te # theory 37 37 37 37 37 37 37 37	unique c 37 37 37 37 37 37 37 37 37 37	ndancy : % omplete 100.0 100.0 100.0 100.0 100.0 100.0 100.0	into account) average redundancy 9.9 10.4 9.5 8.2 8.0 6.6 7.4	- Laue (mean F2 7439.89 6698.87 4567.71 2635.08 3244.61 1602.12 1429.96	group: P6/m mean F2/sig(F2) 46.34 41.29 21.00 15.43 15.07 8.18 8.00	(hex-c) Rint 0.070 0.106 0.112 0.290 0.390 0.395 0.588	RsigmaB 0.017 0.026 0.031 0.069 0.066 0.102 0.119
resolu- tion(Å) inf-1.70 1.69-1.33 1.33-1.15 1.14-1.04 1.04-0.96 0.96-0.91 0.91-0.86 0.86-0.82	vs resol # kept 365 383 352 302 295 244 274 205	lution (te # theory 37 37 37 37 37 37 37 37 37	unique c unique c 	ndancy : % omplete 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	into account) average redundancy 9.9 10.4 9.5 8.2 8.0 6.6 7.4 5.5	- Laue (mean F2 7439.89 6698.87 4567.71 2635.08 3244.61 1602.12 1429.96 1433.78	group: P6/m mean F2/sig(F2) 46.34 41.29 21.00 15.43 15.07 8.18 8.00 6.41	(hex-c) Rint 0.070 0.106 0.112 0.290 0.390 0.395 0.588 0.674	RsigmaB 0.017 0.026 0.031 0.069 0.066 0.102 0.119 0.139
resolu- tion(Å) inf-1.70 1.69-1.33 1.33-1.15 1.14-1.04 1.04-0.96 0.96-0.91 0.91-0.86 0.86-0.82 0.82-0.78	vs resol # kept 365 383 352 302 295 244 274 205 197	lution (te # theory 37 37 37 37 37 37 37 37 37 37	unique c 	ndancy : % omplete 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	into account) average redundancy 9.9 10.4 9.5 8.2 8.0 6.6 7.4 5.5 5.3	- Laue (mean F2 7439.89 6698.87 4567.71 2635.08 3244.61 1602.12 1429.96 1433.78 1736.34	group: P6/m mean F2/sig(F2) 46.34 41.29 21.00 15.43 15.07 8.18 8.00 6.41 7.15	(hex-c) Rint 0.070 0.106 0.112 0.290 0.390 0.395 0.588 0.674 0.449	RsigmaB 0.017 0.026 0.031 0.069 0.066 0.102 0.119 0.139 0.130
resolu- tion(Å) inf-1.70 1.69-1.33 1.33-1.15 1.14-1.04 1.04-0.96 0.96-0.91 0.91-0.86 0.86-0.82 0.82-0.78 0.78-0.75	vs resol # kept 365 383 352 302 295 244 274 205 197 69	lution (te # theory 37 37 37 37 37 37 37 37 37 37 37 48	unique c 37 37 37 37 37 37 37 37 37 37 37 37 37	ndancy : % omplete 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	into account) average redundancy 9.9 10.4 9.5 8.2 8.0 6.6 7.4 5.5 5.3 1.8	- Laue (mean F2 7439.89 6698.87 4567.71 2635.08 3244.61 1602.12 1429.96 1433.78 1736.34 986.38	group: P6/m mean F2/sig(F2) 46.34 41.29 21.00 15.43 15.07 8.18 8.00 6.41 7.15 2.72	(hex-c) Rint 0.070 0.106 0.112 0.290 0.390 0.395 0.588 0.674 0.449 0.589	RsigmaB 0.017 0.026 0.031 0.069 0.066 0.102 0.119 0.139 0.130 0.270
resolu- tion(A) inf-1.70 1.69-1.33 1.33-1.15 1.14-1.04 1.04-0.96 0.96-0.91 0.91-0.86 0.86-0.82 0.82-0.78 0.78-0.75 inf-0.75	vs resol # kept 365 383 352 302 295 244 274 205 197 69 	lution (te # theory 37 37 37 37 37 37 37 37 37 48 	unique c 37 37 37 37 37 37 37 37 37 37 37 37 39 	ndancy : % omplete 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 81.3 97.6	into account) average redundancy 9.9 10.4 9.5 8.2 8.0 6.6 7.4 5.5 5.3 1.8 7.2	- Laue (mean F2 7439.89 6698.87 4567.71 2635.08 3244.61 1602.12 1429.96 1433.78 1736.34 986.38	group: P6/m mean F2/sig(F2) 46.34 41.29 21.00 15.43 15.07 8.18 8.00 6.41 7.15 2.72 20.97	(hex-c) Rint 0.070 0.106 0.112 0.290 0.390 0.395 0.588 0.674 0.449 0.589 0.200	RsigmaB 0.017 0.026 0.031 0.069 0.066 0.102 0.119 0.139 0.130 0.270

Refinalize

OK

×

Pre-Analysis by the user:

In this case of bad data:

Hint that something is not good from

(1) Looking through frames:

e.g. Run 4 has lots of non-exposed frames

(3) Automatic data reduction also shows bad RINT for run 4,

but also things are not good

- (1) Introduction to CrysAlisPro
- (2) General remarks
- (3) Centre DAC
- (4) Data collection
- (5) Pre-analysis by user

(6) Best possible data reduction for high pressure data

Get good unit cell

Data reduction

Absorption correction

- (1) Introduction to CrysAlisPro
- (2) General remarks
- (3) Centre DAC
- (4) Data collection
- (5) Pre-analysis by user

(6) Best possible data reduction for high pressure data

Get good unit cell

Data reduction

Absorption correction

Good crystal, good centering, good data collection

→ CrysAlisPro usually finds UB

What to do if this is not the case:

- (1) New peak search with : exclude region of powder ring from gasket
- (2) Delete strong diamond reflections
- (3) Search for known cell

Good crystal, good centering, good data collection

→ CrysAlisPro usually finds UB

What to do if this is not the case:

- (1) New peak search with : exclude region of powder ring from gasket
- (2) Delete strong diamond reflections
- (3) Search for known cell

Good crystal, good centering, good data collection

→ CrysAlisPro usually finds UB

UB still not found:

Dataset very likely not good enough, nevertheless further tricks to find UB

(4) In reciprocal space viewer:

Delete every reflection, that you know is not from the sample

you are interested in

(5) Delete reflection list and hand pick reflections

Now, how does it work in the software:

Now, how does it work in the software:

(1) New peak search with

- (1) exclude region of powder ring from gasket
- (2) reflections around beamstop

Now, how does it work in the software:

1) New peak search with

(1) exclude region of powder ring from gasket

(2) reflections around beamstop

Either from commandline:

Command **um skipd dmax dmin** prevents peak searching between dmax and dmin

Reflection around beamstop:

skip region from 999.0 down to slightly longer than your unit-cell **um skipd 999.0 9.0**

Set a skip region for strong powder lines from gasket material:

um skipd 2.15 1.75

Now, how does it work in the software:

(2) Delete strong diamond reflections

Many ways to do that:

- Sort list by intensity and delete strongest reflections
- Intensity filter in Ewald explorer
- New Ewald explorer \rightarrow see OD talk

Lattice wizard (1.0.32)

Lattice wizard

LATTICE

Current cell (CSD: install)

6.934(4) 6.9256(14) 10.1830(8) 89.989(10) 89.956(18) 120.08(4) 423.1(2) Constrained current cell

6.9264(6) 6.9264(6) 10.1846(6) 90.0 90.0 120.0 423.15(6)

Lattice reduction

selected cell

6.9281 6.9250 10.1925 90.0894 89.9958 120.0379 hP 12

reduced cell

6.9281 6.9250 10.1925 90.0894 89.9958 120.0379 423.3

PEAK TABLE

PROFFITPEAK table UB fit with 1008 obs out of 1008 (total:1008,skipped:0) (100.00%)

INSTRUMENT MODEL

Goniometer

beam: -0.10496 alpha: 50.04096 beta: -0.02015 om zero: -0.23466 th zero: -0.12048 ka zero: 0.09952 Detector

0.04855 x-rot: -0.27970 y-rot: x-cen: 994.14203 y-cen: 1000.24653 distance: 83.00000 Wavelength Mo (Ang): A1 0.70930 A2 0.71359 B1 0.63229

1.261	02	2 diam	nond
1 070	. 11	2 diam	and
1.075) 11	3 Uldi	iona

X

Peak table editing (1.0.9)

	₽Ľ,ċ	Peak	table	editin	9							Č	Pro rysAlis
	number	h	k	1	×	у	z	a	intensity	fla	9	prof pts	~
11	303	0	3	ź	-0.00934	-0.30314	0.23004	1.86335	*****	i	1و	1	
١	460		-3		0.03116	0.37779	0.03314	1.86401	583346		g1	1	
	479		- 3	- 2	0.00881	0.30171	-0.23334	1.85917	489636		للو	1	
	722			2	-0.00806	-0.30196	0.23241	1.86104	419872		للو	1	
M	982			-2	-0.03177	-0.37651	-0.03465	1.86937	415369		للو	1	
	315	-1	5		0.07048	-0.51843	0.14192	1.30842	378853		للو	1	
	497	1	-5	0	-0.06923	0.51822	-0.14272	1.30878	352686	i	للو	1	
C	984	0		2	-0.00663	-0.30289	0.23069	1.86267	338523	i	للو	1	
5	526	1	-2	2	-0.08024	0.21661	0.09009	2.86077	315102	i	لو	1	
	1006	-1	5 		0.07260	-0.51779	0.14165	1.30939	311131	••••••••••••	<u></u>		
.	190		3		-0.01995	-0.34049	0.09878	1.99753	308877	1	يو	L	
Ir	472 **F	0	-3	•	0.02049	0.34003	-0.09970	1.9902D 0 05700	300090	1	<u>а</u> г -1	1	
	220	1	- 2	2	-0.10131	-0.12425	0.10903 0 08885	2.00120 1 88696	303033	1	а 1	1	
	232	0	1	*	-0.02201	-0.32000	0.09090 N 19N99	2.33020	2022 1 0 206020	;	gir al	1	
N	757	-1	, ,	- 2	0 08026	-0.21668	-0 08975	2.00100	290920	i	al	1	
IN	617	-1	2	2	0.10389	-0.13978	0.17718	2.85494	285644	i	al	1	
	806	0	-3	0	0.02030	0.34025	-0.09903	1.99833	283537	i	а а	1	
	608	-1	ź	ź	0.10240	-0.13954	0.17663	2.86821	282449	i	ړ.	1	
	989	0	3	0	-0.02200	-0.33987	0.09892	1.99997	276216	i	لو	l	
	184	0	3	ź	-0.00940	-0.30255	0.23222	1.85918	251280	i	ц	1	~
	<												>
	Delete	Up Down	New Reject	hkl forn	nat ger Ofra	octional	- Coordina O angle	ates es 🖲 car	tesian 🔿 de	tector		Copy to clip Help	Exit sorted Exit

Now, how does it work in the software:

(3) Search for known cell	Peak hunting	nit cell finding
	Unit cell finding with options	
	Select unit cell from list of found cells	
	Brute force indexation of known cell	indexation with
	Indexation from three known reflections	rrent cell
	Set orientation matrix by hand	
	Unit cell finding in direct space (Clegg)	
	Search for smaller unit cell volume	ttice
	Search for better x,y detector center	insformation
	Remove lambda-half reflections from peak table	
	Crystal shape	
	Find reflection tails and mark skip	commensurates ,
	Delete reflection tails	asi-crystals
	Check for the sample jumping	
	Unit cell gaps	

Peak table	Algorithm		
Normal peak table	T-vector Dirax	and house in a	the first of the first of the second
🔿 Delta (differential) peak table	C Stereographic	eak hunting	Unit cell finding
Sample type		th options	
Single crystal		m list of found cells	
Unit cell limits	min max	tion of known cell	indexation with
• SM C PX C User 2.	0 120.0 Calc	ee known reflections	rrent cell
C Twin / multicrystal	min max	trix by hand	
# of components 2 💌 2.	0 120.0 Calc	direct space (Clegg)	
Lock present components		unit cell volume	ttice
the Lattice Wizard):	iwin 1 Iwin 2 Iwin 3	y detector center	insformation
HINT: To lock current UB for twin 1, fir 'Current UB to twin'. Then return here	st go to UM TWIN utility and click and select 'Twin 1' checkbox above.	alf reflections from peal	< table
🔲 Consider Bravais lattice type			
Force identical lattice for all compo	nents	s and mark skip	commensurates ,
Known cell		ils	asi-crystals
Search known cell 6.936.9310.18	89,99,89,96,120,08	ple jumping	
	0717707170120100		•

Good crystal, good centering, good data collection

 \rightarrow CrysAlisPro usually finds UB

UB still not found:

Dataset very likely not good enough, nevertheless further tricks to find UB

(4) In reciprocal space viewer:

Delete every reflection, that you know is not from the sample

you are interested in

(5) Delete reflection list and hand pick reflections

Cell should now be found

If problems occur: make sure this cell is used during data reduction Transform cell with Unit-Transformation 100/010/001

 \rightarrow CrysAlisPro uses <u>u</u>sed-defined UB

- (1) Introduction to CrysAlisPro
- (2) General remarks
- (3) Centre DAC
- (4) Data collection
- (5) Pre-analysis by user

(6) Best possible data reduction for high pressure data

Get good unit cell

Data reduction

Absorption correction

So now: best possible data reduction for high pressure data

Profile fitting data reduction

Step 2: Experiment run list for data reduction

Run list: F:\0D_Work\HP_DEM0\HP_DEM0_\HP_DEM0_

*.img	Ŧ
-------	---

CrysAlis

X

Image dir: F:\OD_Work\HP_DEMO\HP_DEMO_\frames

<u># 1</u>	суре	start	end	width	exposure	omega	detector	kappa	phi	start	end	
1	0	27.00	54.00	1.00	65.00	-	22.09	-99.00	0.00	0,	0	
2	0	-41.00	-4.00	1.00	65.00	-	22.09	114.00	135.00	1,	37	
3	0	18.00	51.00	1.00	65.00	-	22.09	-97.00	-143.00	1,	33	
4	0	-15.00	11.00	1.00	65.00	-	-23.42	-77.00	-180.00	0,	0	
5	0	-60.00	7.00	1.00	65.00	-	-23.42	53.00	-17.00	1,	60	
6	•	-36.00	21.00	1.00	65.00	-	-23.42	38.00	150.00	1,	57	
7	•	-67.00	-36.00	1.00	65.00	-	-23.42	-38.00	60.00	1,	31	
8	•	29.00	98.00	1.00	65.00	-	22.09	-135.00	57.00	1,	69	
9	•	-26.00	13.00	1.00	65.00	-	22.09	81.00	-29.00	1,	39	
0	•	-33.00	2.00	1.00	65.00	-	-23.42	22.00	-23.00	1,	35	
de ha	efault viour	: the who edit the	ıle experir run list -	ment will (->	evaluated.	To modi	fy this	Edit	start nun	1 of sel	ected	run
								Luit	ena num	or set	- CIGUT	un

offit: CrysAlisPro data reduction assistant (1.0.25)	
Profile fitting data reduction	CrysAlis
Step 3: Basic algorithm parameters	
Reflection position prediction	
Auto select optimal prediction approach on run basis	
Follow model changes on frame by frame basis (moderate	sample wobbling)
Follow significant sample wooding (2-cycle 3D peak analysis	
Follow sudden (discontinuous) changes of sample orientation	
Orientation search range (max 10 deg) 2.00 Search	steps/deg (max 10) 📃 4
Edit special pars	
A previous run of dc proffit has left 3d profile information and/or inte	gration results on the disk
Clear data from previous run	
< <u>Z</u> urück <u>W</u> eiter > Fertig stell	en Abbrechen Hilfe

Profile fitting data reduction	CrysAlis	
tep 3: Basic algorithm parameters		
Reflection position prediction	Proffit special parameters	
	3D intensity integration 2D profile fitting (recommended only for very	Extra corrections
Auto select optimal prediction approach on run basis	 strong diffraction data) 3D profile fitting (improves weaker data, 	Apply inverse noar correction (i.ex. and noor ned correct
Follow model changes on frame by frame basis (moderate sam	Reflection positioning and integration	Apply float correction (f.ex. additional flood field correction)
Follow significant sample wobbling (2-cycle 3D peak analysis)	Single wavelength only (recommended exclusively for data up to 1.5 Ang, i.e. large molecules)	
Follow sudden (discontinuous) changes of sample orientation	HKL check in 3D peak analysis (recommended when reflections are very close to each other)	Apply pixelwise absorption correction (prepared by DC ABST Apply monitor renormalization Use file for monitor
	Skip filters	DC JETSHADOW (to visualize beforehand use 'beamstop mask')
Orientation search range (may 10 deg)	Lorentz min = 0.0500 Edit DAC angle	Use JetShadow Edit para alpha: 30,00, beta: 0.00, jet_width: 13,00, jet_distance: 6.00
Unerkalion search hange (max to deg)	Use resolution limits	
	d-value (Ang): inf- 0.74 2theta (deg): 0.00- 57.41	Override integration mask size (generally not
Edit special pars	Extinction rules	for strongly overlapping reflections e.g. twins)
	No extinction rules specified Show rules	Follow profile size changes with incidence angle Adjust masks according to prediction uncertainty (for high a
	and DC CLEAREXTINCT to remove selected or all rules from the list	Print average profiles to history window
		ок 🔰
A previous run of do proffit has left 3d profile information and/or integratio	on results on the disk	
A provide fair of do profix has low of profile information and of integrate		
Clear data from previous run		
- Zurück Matters Earlie staller	Abbrachan Hilfa	

Proffit special parameters X 3D intensity integration Extra corrections C 2D profile fitting (recommended only for very Apply inverse float correction (f.ex. undo flood field correction) strong diffraction data) ♂ 3D profile fitting (improves weaker data, default option) Apply float correction (f.ex. additional flood field correction) Reflection positioning and integration Single wavelength only (recommended exclusively for data up to 1.5 Ang, i.e. large molecules) Apply pixelwise absorption correction (prepared by DC ABSTORUN) HKL check in 3D peak analysis (recommended when reflections are very close to each other) Use file for monitor values Apply monitor renormalization -Skip filters DC JETSHADOW (to visualize beforehand use 'beamstop mask') Lorentz min = 0.0500 Edit Lorentz min Use JetShadow Edit parameters ✓ HP cell opening reject 40.00 Edit DAC angle alpha: 30.00, beta: 0.00, jet_width: 13.00, jet_distance: 6.00 Edit limits Use resolution limits Profile fitting d-value (Ang); inf- 0.74 2theta (deg): 0.00-57.41 Override integration mask size (generally not of original recommended, but smaller mask can be useful 1.00 size for strongly overlapping reflections e.g. twins) Extinction rules No extinction rules specified Follow profile size changes with incidence angle Adjust masks according to prediction uncertainty (for high angle data) HINT: You can use DC EXTINCT to add extinction rules and DC CLEAREXTINCT to remove selected or all rules Print average profiles to history window from the list OK Cancel
Profile fitting data reduction	CrysAlis
itep 3: Basic algorithm parameters	
Reflection position prediction	
Auto select optimal prediction approach on run basis	
Follow model changes on frame by frame basis (moderate	e sample wobbling)
Follow significant sample wobbling (2-cycle 3D peak analysis Follow sudden (discontinuous) changes of sample orientation	.) 1
 Follow significant sample wobbling (2-cycle 3D peak analysis Follow sudden (discontinuous) changes of sample orientation Orientation search range (max 10 deg) 2.00 Search 	n n steps/deg (max 10) 🚺 4
 Follow significant sample wobbling (2-cycle 3D peak analysis Follow sudden (discontinuous) changes of sample orientation Orientation search range (max 10 deg) 2.00 Search 	n n steps/deg (max 10) 🚺 4
 Follow significant sample wobbling (2-cycle 3D peak analysis Follow sudden (discontinuous) changes of sample orientation Orientation search range (max 10 deg) 2.00 Search 	e) n steps/deg (max 10) 🚺 4
 Follow significant sample wobbling (2-cycle 3D peak analysis Follow sudden (discontinuous) changes of sample orientation Orientation search range (max 10 deg) 2.00 Search 	n n steps/deg (max 10) 14
 Follow significant sample wobbling (2-cycle 3D peak analysis Follow sudden (discontinuous) changes of sample orientation Orientation search range (max 10 deg) 2.00 Search Edit special pars A previous run of dc proffit has left 3d profile information and/or integration.	egration results on the disk
 Follow significant sample wobbling (2-cycle 3D peak analysis Follow sudden (discontinuous) changes of sample orientation Orientation search range (max 10 deg) 2.00 Search Edit special pars A previous run of dc proffit has left 3d profile information and/or integer data from previous run	n n steps/deg (max 10) – 4 – – – – – – – – – – – – – – – – –
 Follow significant sample wobbling (2-cycle 3D peak analysis Follow sudden (discontinuous) changes of sample orientation Orientation search range (max 10 deg) 2.00 Search Edit special pars A previous run of dc proffit has left 3d profile information and/or integration Clear data from previous run	n steps/deg (max 10) 14

Proffit: CrysAlisPro data reduction assistant (1.0.25) Proffile fitting data reduction Pro Pro Pro Pro Pro Pro Alis	X V = 423.1(2) Constrained cell 6.9264(6) 6.9264(6) 10.1846(6) 90.0 90.0 120.0 V = 423.15(6) Symmetry Laue class: 1bar P-lattice
Step 4: Background evaluation Background for 3D centroids For an acurate evaluation of integrated intensities a good background determination is essential. Two parameters control this evaluation: The evaluation range Re and the repeat frequency Fr. Re = 25 Edit Re Fr = 25 Edit Fr Binning may reduce the memory requirements for the background evaluation. Default is 1. You may use 2 or 4 in case of lack of physical memory on your machine (risk of swapping)! © 1 © 2 C 4 Reduce background accumulation to SHORT type (saves memory) Required disk/memory space for background evaluation: 48.7/50.0 Mb 48.7/50.0 Mb	AVERAGE UNIT CELL FROM PROFFIT Constrained cell (1008 obs) 6.9264(6) 6.9264(6) 10.1846(6) 90.0 90.0 120.0 V = 423.15(6) FINAL UNIT CELL FOR SELECTED SG Constrained cell (1008 obs) 6.9264(6) 6.9264(6) 10.1846(6) 90.0 90.0 120.0 V = 423.15(6) PEAK TABLE UB fit with 1008 obs out of 1008 (total:1008,skipped:0) (100.00%) INSTRUMENT MODEL X-ray wavelength: Mo x-cen: 996.9059 y-cen: 1000.4268
Background for 3D integration	Editing smart background evaluation range:
 Average background from 3D centroid evalutation (good for stable & low background, fast) Smart background (combination of local and average background computation, good for weaker data with bird background and locally features, e.g. protein data, slower) 	Please enter evaluation range (1,15) - current value 3. Range width must be an odd number.
Frame range = 3 Edit range	B OK Cancel
< <u>Z</u> urück <u>W</u> eiter > Fertig stellen Abbrechen Hilfe	

offit: CrysA	lisPro data reduction assistant (1.0.25)		
Pro	file fitting data reduction	CrysAlis	
Step 5: Ou	tlier rejection		
•	aler refection		
CCD data	sets usually contain more than the unique data required l	for the structure determination. This	
CCD data redundant The reject	sets usually contain more than the unique data required I data can be used to check for measurement outliers. ion is based on R. Blessing (1997), J. Appl. Cryst. and ad	for the structure determination. This Iditional CCD specific criteria.	
CCD data redundant The reject	sets usually contain more than the unique data required I data can be used to check for measurement outliers. ion is based on R. Blessing (1997), J. Appl. Cryst. and ad	for the structure determination. This Iditional CCD specific criteria.	
CCD data redundant The reject	sets usually contain more than the unique data required I data can be used to check for measurement outliers. ion is based on R. Blessing (1997), J. Appl. Cryst. and ad jection	for the structure determination. This Iditional CCD specific criteria.]
CCD data redundant The reject Outline Outline Don't	sets usually contain more than the unique data required I data can be used to check for measurement outliers. ion is based on R. Blessing (1997), J. Appl. Cryst. and ad jection use outlier rejection	for the structure determination. This Iditional CCD specific criteria.	
CCD data redundant The reject Outline O Don'l	sets usually contain more than the unique data required I data can be used to check for measurement outliers. ion is based on R. Blessing (1997), J. Appl. Cryst. and ad jection use outlier rejection outlier rejection:	for the structure determination. This Iditional CCD specific criteria.	
CCD data redundant The reject Outline Outline Don't	sets usually contain more than the unique data required I data can be used to check for measurement outliers. ion is based on R. Blessing (1997), J. Appl. Cryst. and ad jection use outlier rejection use outlier rejection: 1 8.92395 6.92125 10.18177 89.94968 90.1	for the structure determination. This Iditional CCD specific criteria.	

Proffit: CrysAlisPro data reduction assistant (1.0.25)	×
Profile fitting data reduction	CrysAlis
Step 6: Output	
Tip: You may change the output name and directory to keep results parameter sets (UB, supercells) Output file name: F:\OD_Work\HP_DEMO\HP_DEMO_k01 Change output name	of data reductions under different
Space group determination Automatic	Manual
Automatic structure solution (AutoChem)	AutoChem options
Chemical formula not available	
Completeness computation	
Make unwarp pictures Max o der (one for h, k, l):	0 Resolution: 0.80
< <u>Z</u> urück <u>W</u> eiter > Fertig st	ellen Abbrechen Hilfe

Inspect data collection and reduction results

- - -

×

Data reduction file	e contents	Data redu	ction output	Red graphs	Í	Data collection of	output	Devid	ces log
1.27-1.11	238	238	29	8.2	4134.71	9.62	0.051	0.063	0.067 🔺
1.11-1.03	204	200	29	6.9	2870.75	7.44	0.100	0.112	0.093
1.03-0.95	207	207	29	7.1	3588.85	7.80	0.064	0.077	0.090
0.95-0.90	160	160	29	5.5	1760.28	4.97	0.086	0.103	0.137
0.90-0.85	153	153	29	5.3	1900.35	4.77	0.080	0.091	0.142
0.85-0.80	146	146	29	5.0	2089.86	4.95	0.090	0.100	0.147
0.80-0.76	72	72	33	2.2	2164.78	4.80	0.090	0.101	0.149
inf-0.76	1954	1948	294	6.6	4568.93	11.20	0.053	0.065	0.062
inf-0.80	1895	1889	266	7.1	4638.78	11.39	0.052	0.064	0.061

Statistics	vs resol	ution (ta	king redu	ndancy	into account)	- point	group symme	etry: P6	/ m
resolu-	#	#	#	*	average	mean	mean		
tion(A)	kept	theory	unique c	omplete	redundancy	F2	F2/sig(F2)	Rint	RsigmaB
inf-1.93	267	29	 29	100.0	9.2	7801.31	70.75	0.032	0.010
1.89-1.48	259	29	29	100.0	8.9	8523.08	63.74	0.044	0.015
1.45-1.27	246	31	29	93.5	8.5	5184.41	39.92	0.047	0.019
1.27-1.11	238	34	29	85.3	8.2	4134.71	31.74	0.051	0.027
1.11-1.03	200	31	29	93.5	6.9	2870.75	21.31	0.100	0.040
1.03-0.95	207	39	29	74.4	7.1	3588.85	23.12	0.064	0.038
0.95-0.90	160	35	29	82.9	5.5	1760.28	12.45	0.086	0.063
0.90-0.85	153	41	29	70.7	5.3	1900.35	11.41	0.080	0.065
0.85-0.80	146	44	29	65.9	5.0	2089.86	11.89	0.090	0.069
0.80-0.76	72	58	33	56.9	2.2	2164.78	8.78	0.090	0.095
inf-0.76	 1948	 371	 294	79.2	 6.6	4568.93	 34.87	0.053	0.030
inf-0.80	1889	318	266	83.6	7.1	4638.78	35.68	0.052	0.028
Data reduc	tion ende	d at Wed	Aug 01 12	:00:23	2012				

03

Refinalize

Abs display

•

Inspect data collection and reduction results

×

Data reduction file	Data reduction file contents		ction output	Red graphs	l l	Data collection	output	Devi	ces log
1.27-1.11	238	238	29	8.2	4134.71	9.62	0.051	0.063	0.067 🔺
1.11-1.03	204	200	29	6.9	2870.75	7.44	0.100	0.112	0.093
1.03-0.95	207	207	29	7.1	3588.85	7.80	0.064	0.077	0.090
0.95-0.90	160	160	29	5.5	1760.28	4.97	0.086	0.103	0.137
0.90-0.85	153	153	29	5.3	1900.35	4.77	0.080	0.091	0.142
0.85-0.80	146	146	29	5.0	2089.86	4.95	0.090	0.100	0.147
0.80-0.76	72	72	33	2.2	2164.78	4.80	0.090	0.101	0.149
inf-0.76	1954	1948	294	6.6	4568.93	11.20	0.053	0.065	0.062
inf-0.80	1895	1889	266	7.1	4638.78	11.39	0.052	0.064	0.061

Statistics	vs resol	ution (ta	king reau	ndancy 1	into account)	- point	group symme	etry: Po	/ m
resolu-	#	#	#	*	average	mean	mean		
tion(A)	kept	theory	unique c	omplete	redundancy	F2	F2/sig(F2)	Rint	RsigmaB
inf-1.93	267	 29	 29	100.0	9.2	7801.31	70.75	0.032	0.010
1.89-1.48	259	29	29	100.0	8.9	8523.08	63.74	0.044	0.015
1.45-1.27	246	31	29	93.5	8.5	5184.41	39.92	0.047	0.019
1.27-1.11	238	34	29	85.3	8.2	4134.71	31.74	0.051	0.027
1.11-1.03	200	31	29	93.5	6.9	2870.75	21.31	0.100	0.040
1.03-0.95	207	39	29	74.4	7.1	3588.85	23.12	0.064	0.038
0.95-0.90	160	35	29	82.9	5.5	1760.28	12.45	0.086	0.063
0.90-0.85	153	41	29	70.7	5.3	1900.35	11.41	0.080	0.065
0.85-0.80	146	44	29	65.9	5.0	2089.86	11.89	0.090	0.069
0.80-0.76	72	58	33	56.9	2.2	2164.78	8.78	0.090	0.095
inf-0.76	 1948	 371	 294	79.2	6.6	4568.93	 34.87	0.053	0.030
inf-0.80	1889	318	266	83.6	7.1	4638.78	35.68	0.052	0.028
Data reduc	tion ende	d at Wed	Aug 01 12	:00:23 2	2012				

•

03

-

Data reduction finalizing - rrp file to hkl file (1.6.6)	×	Data Reduction
Data reduction finalizing - rrp file to hkl file	CrysAlis	<u>FRAMES/RUNS</u> In run list: 421/10, u
Chemical formula K2 Zr Si3 09 Z= 2.00 Edit formula Outlier rejection Use outlier rejection: -3 (hex-c) NP 6.90782 6.91614 10.18297 90.01084 89.98175 119.90899 Use Friedel mates as equivalent	Absorption correction Apply face based absorption correction Analytical absorption correction No face information available! Show face list Apply Apply	3D PROFILE ANALYSIS Frames done: 361 Reflections tested: 15 Avg mosaicity (in degr e1=0.64, e2=0.61, e3= 3D INTEGRATION & FITTING Frames done: 361 Fitted: 1954, overflow Outliers rejected: 25 FINALIZATION INPUT FILE Filename: 03
Sigma calculation control/Overlap+twin reject Limits, filters and la Image: Estimate error model Error model options Image: Override rejection par 0.5000 6.0000 Image: Use overlap rejection 100.0000 Image: Use twin rejection 0.0000 Image: Use twin rejection 0.00000 Image: Use twin rejection 100.0000 Image: Use twin rejection Image: Use twin rejection	attice extinction filters ity sigma lin: -3,0 d-value (Ang): inf- 0.80 2theta (deg): 0.00: 52,63 Edit res limits 2theta (deg): 0.00: 52,63 Flattice 0 active filters	Space group determination options X Refinalize data using space group cell, Laue or lattice type (required for consistent .cif, .od_cif, .mtz output) Keep current lattice Remove lattice absent reflections from output HKL file Remove space-group-absent reflections from output HKL file
Data items in *.hkl file - for use in external programs Image: Data items in *.hkl file - for use in external programs Image: Data items in *.hkl file - for use in external programs Image: Data items in *.hkl file - for use in external programs Image: Data items in *.hkl file - for use in external programs Image: Data items in *.hkl file - for use in external HP info (SHELX definition) - external HP correction Image: Data items in *.hkl file in wing and 0 lex2 subfolders (\struct*_03) - provided that output hkl file is compatible with existing structure Tip: You may change the output name and directory to keep results of data reductions under different parameter set (, struct, signa parameter set (, struct, with the existing parameter set (, struct, with the parameter set (, struct, with the existing parameter set (, struct, wither existing parameter set (, struct, wi	User modifications Export .eqv file Export Stoe *.crs Export sadabs *_1.raw; Export CIF file Export CIF file Scaling and empirical decorption Scaling and empirical decorption Space group determination (GRAL) Completeness (U.80 Ang) Completeness (U.80 Ang) C	Run GRAL in silent mode Show all space groups from a branch Show lattice selection window Run GRAL in interactive mode Create IN5 file Limit space groups taken into consideration All noncentrosymmetric Chiral only
Change output name	OK Cancel	OK Cancel

Data reduction finalizin	g - rrp fi	ile to hkl file	(1.6.6)
--------------------------	------------	-----------------	---------

Chemical formula		Absorption correction
Not available	Edit formula	Apply face based absorption correction
Jutlier rejection		Analytical absorption correction No face information available!
Use outlier rejection: -3 (hex-c)	on't use outlier rejection	
hP 6.90782 6.91614 10.18297 90.01084 89.98175 119.	.90899	
Use Friedel mates as equivalent		Show face list
		Apply - Spherical abs (μr)= 0.070
igma calculation control/Overlap+twin reject	Limits, filters and la	ttice extinction filters
Estimate error model Error model options	🔽 Neg intensi	ity sigma lim -3,0 Edit sig limit
Override rejection par 0,5000 6,0000 Edit rej. par	Resolution	d-value (Ang): inf- 0.80 Edit res limits
Use overlap rejection 100,0000 Edit overlap rej	© N	o filter 🔿 use filter for: 🛛 🖂
Use twin rejection (C < C > 100,0000 Edit twin rej	Filters	0 active filters
ata items in * bkLfilo - fer use in enternal pregrame		User modifications
Beam path information (for absoprtion correction)/special formats		Export .eqv file
direction cosines (SHELX definition) - external absorption correct	ion 💌	Export Stoe *.crs
		Export sadabs *_1.raw;
direction cosines (SHELA derinition) - external absorption correction direction cosines (Busing&Levy definition) - external absorption co	orrection	Export MTZ file
direction cosines (SHELX definition plus XD related data) - extern	na line nal absorption correction	Scaling and empirical absorption Edit ABSPACK
Schwatzenbach psr plus exp. Info - scale3 abs/pack/abspack direction cosines plus exp. info plus HP info (SHELX definition) - i	external HP correction	Space group determination (GRAL) Space group options
: Monnal III file without batch number erent parameter sets (Limits, sigma parameters)		Completeness (0.80 Ang)

x

Absorption correction:

	Programme
+ + 10	
08:30-09:00	D.R. Allan, How to perform HP single-crystal diffraction at Diamond
09:00-09:30	M. Hanfland, How to perform HP single-crystal diffraction at ESRF
09:30-09:45	Discussion
09:45-10:30	R.J. Angel, Absorption and other intensity corrections
10:30-11:00	Coffee Break
11:00-11:30	General discussion, requests for afternoon sessions
11:30-12:30	K. Friese, Refinements to high-pressure data
12:30-13:30 #	Lunch · · · · ·

Afternoon Parallel Sessions

13:30-14:30	ŕ	R.J. Angel, Absorption corrections with Absorb	Open sessions and problem solving
14:30-15:30		K. Friese, A. Grzechnik, H.P. refinement, mostly Jana2006	Open sessions and problem solving
15:30-16:00	Ð	Coffee Break	a a .
16:00-17:00	9. 10.	T. Boffa-Ballaran, Fitting equations of state (EoSfit)	R.J. Angel, Post-refinement parametric data handling

Next version of *CrysAlisPro* Call Program Absorb from *CrysAlisPro* directly \rightarrow Mathias Meyer New feature in CrysAlisPro:

Reject reflections with bad reflection profile: If diamond reflection lies on a sample reflection

vsAlis

and

Reject defined regions diamond reflections and diamond tails From peak list

Profile fitting data reduction

Step 3: Basic algorithm parameters

Proffit special parameters 3D intensity integration Extra corrections 2D profile fitting (recommended only for very Apply inverse float cor strong diffraction data) 3D profile fitting (improves weaker data, default option) Apply float correction Reflection positioning and integration Single wavelength only (recommended exclusively for data up to 1.5 Ang, i.e. large molecules) Apply pixelwise absor HKL check in 3D peak analysis (recommended when reflections are very close to each other) Apply monitor renorma Skip filters DC JETSHADOW (to visualize Edit Lorentz min Lorentz min = 0.0500Use JetShadow HP cell opening reject 40.00 Edit DAC angle Edit limits Use resolution limits Profile fitting Override integration m recommended, but sm Reject reflections with bad profiles (e.g. for HP data) for strongly overlapping I/sig > 10 8 Profile agreement < 0.8 Follow profile size char Adjust masks accordin Extinction rules

Questions?

ASK colleges with experience in high pressure data integration

X-ray Diffraction Forum:

http://www.agilentxrdforum.com/

http://www.agilentxrdforum.com/yaf_login.aspx?returnurl=%2fdefault.aspx